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ABSTRACT 

To enable a quantitative approach to the problems of control and 

synthesis of multivariable system a measure of interaction strength is 

proposed. Measure is defined as a property of the system under consider- 

ation in terms of the two conceptual experiments. Necessary and sufficient 

conditions for unit interaction are given for different types of linear 

systems. A statistical approach to the interaction measure is also dis- 

cussed . 

Mihajlo D, Mesarovic 
Project Director-Adaptive 
and Self-Organizing Systems 
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MEASURE OF INTERACTION IN A SYSTEM 

AND ITS APPLICATION TO CONTROL PROBLEMS 

I«    Introduction 

Problems of analysis and synthesis of a complex and multivariable systems 

present on one hand a special challenge to the science today in many different 

facets and on the other hand present a daily problem in manjPpractical engin- 

eering situations^ a problem which cannot be avoided or ignored any moreo    What 

is necessary, to cope ■with this situation,  is a consistent approach to multi- 

variable systems which will take  into account the very specific nature of such 

systems»    This viewpoint was discussed in detail in        where it was shown that 

in order to build such an approach it is necessary to attack the problems of 

interactions on a scientific,  ergo,  quantitative basis«    This paper presents 

an initial attempt toward developing such an approach to the problem of inter- 

action«    It presents,  in essence,  concretization of the ideas developed in       o 

In addition to the discussion of the basic properties of interaction such as 

instances of unit and zero interactions a possible measure of the interaction 

strength is proposed« 

It is interesting to review briefly how the problem of interaction has 

been treated so far in the control theory«    In the  early "servomechanism" age 

of the control theory the trend was to disregard the interactions and to treat 

every individual input-output pair by single variable techniques«    Attempts to 

justify this assumption in practice by intentionally decoupling the multivari- 

able system have almost never been successful«    In the later "computer control" 

age of control theory a trend toward the other extreme has been developed«    A 

complete knowledge of the process is assumed and the computer is assumed to 

generate the best oossible manipulated input set to the system under controlo 

Using state variable approach multi-dimensional and multivariable problems 

have been equated.    The underlying philosophy was that the computer is or can 

be made to be almighty and therefore can answer all the problems no matter how 

complex is the system«    It was not long before the pittfalls of such an approach 

were recognized« 

In the present state of knowledge it might be rather safely assumed that 

an integrated,  centralized, dynamically optimal computer control is on the verge 



of the Impossible if the system is of a reasonable size, say with twenty state 

variables» 

To cope with these problems a novel approach to control of complex multi- 

variable systems has been suggested termed the organizational or multi-level 
(2) 

goal-seeking approach»    Highlights of this approach are:  reticulation of 

the system into the subsystem by  grouping the strongest interacting variables; 

control every one of the subsystems in the best possible fashion using inter- 

acting control approach  j recompensating for the overlooked subsystems inter- 

actions by the coordinating action of a set of optimizers or controllers arrang- 

ed in a hierarchy on different levels« 

To Implement such an approach to control of complex systems a measure of 

interaction is necessary«.  It is within the immediate framework of this approach 

that the subsequent development of the interaction measure took place» 

It is of interest to notice that the multi-level goal-seeking approach is 

applied in many complex natural systems such as in the coordinating action of 

the central nervous system or in man-made systems such as industrial organiza- 

tions  » One would expect, therefore, that similar principals might be useful 

when the complexity of the technical system under control becomes comparable to 

the complexity of the mentioned natural systems0 

II0 Basic Considerations of the Interaction Measure Concept 

The concept of interaction introduced in this paper is based on the 

following considerationss 

lo Interactions are viewed in a behavioristic fashion on the basis of 

the mutual influence of the two variables or two sets of variables regarding 

them as time functions and disregarding many non-abstract attributes of the 

system such as energy, spatial and temporal closeness, etc« 

2= Interactions under consideration in this paper relate output variables» 

In general interactions between the two subsystems can be approached 

in two wayss 

a) "White box" approach - when one has access to the system and can 

recognize the subsystems and measure the terminal variables of the subsystems 

which are the inside variables of the system» The subsystem interaction is 

defined in terms of these inside variables» 
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b) "Black box" approach - when the observer does not have the access 

to the inside of the system« Interaction between the subsystems should be con- 

cluded upon from the observation of the systenu The only subsystems which can 

be considered are those for which at least a subset of their terminal variables 

are at the same time terminal variables of the system» Two further distinctions 

can be made a 

a) Cross-transfer interactions specify the relations among the 

sets of input and output variables» 

ß) Output interactions specify the relation among the subsets of 

the outputs set« 

We shall consider in this paper ß-category of interactions i.e» output 

interactions. The reasons which causes the emphasis on this type of interaction 

are the following: In a control situation, one is concerned with influencing 

the behavior ~f the output variables of the system in a best optimal way with 

the specified restrictions and constraints. The primary task in facilitating 

a raultivariable control problem by reticulation is to subdivide the set of 

output variables into the subsets which will be influenced optimally (under 

constraints) in a spacially or temporally separated arrangements. Of special 

concern is how the control of one output subset i.e. of one sub-system, influ- 

ences the behavior of the rest of the system ergo the remaining output subset. 

One would desire to group all the strongly interacting outputs into given groups 

and define the subsystems borders along the lines of weak outputs interaction. 

3« Interactions are considered dynamically« They relate the time functions 

in a finite or infinite time intervals« 

We are now in a position to define the black box output interactions as 

a dynamical property of an abstract or physical system.  In order for a system 

attribute to be general it should be defined on the basis of the behavior of 

systems itself therefore on the basis of a conceptual "experiment" rather than 

on the basis of any specific analytical description of the system. To specify 

output interaction one has to observe the systems behavior in two different 

modes, therefore to perform two "experiments": 

a) Observe the behavior (make the record of the time functions) of 

the two outputs "i" and "j" (two output sets) over the time interval under 

consideration. 



b) Change the behavior (time function) of the output i and observe 

the change produced in the output J. The change produced now in output j will 

specify interaction K ., 

Several remarks arise immediately; 

1, Interaction K  is different than K... 

2. In general, especially for nonlinear system, interaction depends upon the 

operating conditions i.e» input and output sets in "experiment" a and also upon 

the change in output i - in experiment ß« 

3o Since outputs by definition cannot be changed directly, change of the out- 

put i - has to be produced by a change in the input sets» Interaction, there- 

fore, depends upon this change too« 

In view of these three remarks the experiments a and ß should be carried 

out in the following ways 

a) Change one input J (one input set) in a given way and also change 

simultaneously all remaining inputs in such a way that all the outputs except 

j-th remain unchanged. 

A yj ^ 0 : A yk = 0 

K = -Lj o c oil 

k ^ j (1) 

This modified experiment is necessary in order to recognize the input 

(seO with respect to which the interaction is measured. 

ß) Keep the j-th input (set) unchanged and change all remaining inputs 

so as to produce a given change in i-th output and prevent changes in any out- 

put (set) other than i- and ^- 

Ä x. = 0 s A yk = 0 

K ~ -L9 © o «n 

k ^ j, i (2) 

On the basis of the preceeding specification of the conditions for the 

two experiments three basic properties of interaction become apparent. 

1« Interaction depends upon the outputs in both experiments and upon the 

specified input x. 

I 
1 
I 
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Kji [73(t)' 73(t)' r±(t)* yi.(t)' xj(t)l (3) 

2. Interaction K . is zero if change in the i-th output (subset) produce 

no change in the J-th output (subset)« 

3« Interaction is of an infinite strength - termed unit interaction (be- 

cause of the normalization introduced later) - if the changes in i-th and j-th 

outputs (siibsets) are always mutually related functionally in the same way which 

relationship cannot be changed by any manipulation of the inputs» In other 

words some of the outputs completely specifies the others independent of the 

actual inputs« In the case of the analytically described systems one should 

be able to derive from the systems equations a relationship of the form 

f Cy(t)3 = o j f ^ f Cx] (10 

in which input set does not appear explicitly. Note that the relationship f 

is neither linear nor static and can, in general, be a functional as well as 

a function. The dynamic characteristic of the interaction under consideration 

becomes apparent here. 

Zero interaction can be easily recognized either from experiment or from 

the systems equations. Cases with unit interaction however presents special 

theoretical problems since the relationship (U) is not specified in any other 

way but solely by the absence of all the inputs. 

In the following sections we shall give some theorems regarding unit 

interaction in linear systems« Although theorems in Sec. (IV) include theorems 

in (III) as special cases we shall follow inductive procedure to facilitate the 

understandings of the impact of the theorems. 

III. Interactions in a System Subdivided into Two Subsystems 

and the Consider a n-variable system with the input set x(t) ={x.(t)/. 

output set y(t) =iy1(t)|!> Assume that the system is recognized as consisting 

of two subsystems S^  and S« with the terminal variables x^ '(t) =)x.  (t)/j 

y(l)(t) =j^(l)(t)jand x(2)(t) =^(2)(t)]; y(2)(t) =^j
(2)(t)]respectively« 

It is assumed here that input and output vectors of each sub-system are of 

the same order* 



Interactions can be now defined between the two subsystems in terms of the 
both output vectors. 

In experiment a) one is given «n input vector x      (t) while the changes of 
—(2) the output vector of the second  subsystem yv   '(t)  should be compensated by the 

-(2) action of the input vector x      (t).    The conditions for performing experiment 

are therefore 

x(l)(t)    =    given y(2)(t)    =   0 (5) 

Since we are dealing here with the vector compensation the problems of 
-(2) exLstance  and uniqueness of the required input set x    '(t) become of special 

importance      .     Since the primary requirement is to eliminate any change which 

might occur in y      (t) there exist a compensating set in the class of unbounded 

real functions  if the system is linear«    Uniqueness,  however, of a linear multi- 

variable  system compensation depends upon the internal structure of the system. 

To make the outcome of the experiment a)   nonambiguous one should specify addi- 

tional constraints which together with    condition(5) uniquely specifies the 

compensating vector x      (t)«    This point is of a much greater importance for 

the three way subdivision of the system as will be shown in the next section. 

Conditions for experiment   p) are now 
e 

x(l)(t)    =   0 yC2)(t)    =    given (6) 

Problems of existanoe  now become prominent even for the linear system.    If some 
of the elements of the output vector are not functionally independent due to 

the internal structure of the system under consideration,   one cannot satisfy 
-f 2) condition (6)  for any y      (t). 

In what follows  it will be  assumed that the exLstance problems for the 
—(2) subsystem (S?)  have been considered in selecting yv   '(t) and also that addi- 

tional constraints have been specified to make the input vector unique« 

The form of the conditions which specify unit interaction between the 

subsystems CS, ) and (S^) depends upon the way in which the systems structure 

is represented.    It is non-trivial to consider each of the representation 

separately since in the special case as for example  for unit interaction it 

might not be possible to transform the system from one representation to 

another. 



a) In state variabl« representation system is described now by the follow- 

ing vector equation 

dz    - _    - _ . v 
— =Az + Bx (?) 
dt 

y = C z 

where A, B and C are constant matrices, 5 is a state vector y is the output 

vector and x is the input vector» To simplify discussion we will assume that 

the state variables are defined as derivatives of the output variables so 

that the state variable vector can be partitioned in the following way 

-mi ■ Z'   i 

(1) - 

;(1> - *. 

^( 

(Dl Z
(2) =U (2); 

(8) 

d t "i 
(2)   I 

d t 

! 

For a unit interaction in the system S, the following theorem holds 

Theorem 1: A necessary condition for the system S^ to have unit interaction 

is that the Jordan canonical form of matrix B has a zero-eigenvalue of 

multiplicity not smaller than the smallest order among the state vectors z 

and that the Jordan canonical form of the matrix B has multiplicative chain 

associated with this eigenvalue of the same order« 

Proof; Using Jordan canonical form for B eqCy) can be written in the form 

: (2) 

[i- it] - = J T 5E (9) 

where 

f-1 J T B = T"-1- J T (10) 

Under the conditions of theorem (l) the Jordan matrix J is of the form 

J = 

J0  0  ..0 

\ 

•J 
n 

(11) 



•■ 

where J is a k-th order matrix of the form 

0, 1, 0, .. 0 

j  _   0, 0, 1, «. 0 

,. 1 

0    ..0    0 

(12) 

The state vector can now be partitioned in the following way 

z = 

n-p 

(13) 

where z is state vector of an output of p-th order. ® 

Using the partition (13) of the state vector z one can write for Eq« (9) 

Pi [ 
dZr>   - —^ - A_, ;  - 
dt pi 'p - p2 ap ] 

+ P 
p2 

R^nn  - "        1 n"P -A   -«   -A   -  z = I dt    n-p,l n-p   n-p,2 "n-pj = J P x = o (11*) 

Since in Eq(m) no input appears the theorem is proven« Eq(lJi) also gives a 

relationship f which specifies the dynamics of the unit interaction« 

Necessary conditions does not specify whether the unit interaction in 

the system is between the two subsystems or among the variables of any of the 

subsystems. This is specified by the equation (lii) ioe. by the outputs which 

appear in it or rather by the structure of the matrices associated with this 

equation. 

P - Canonical Representation 

The system is represented now by the vector equation 

Q » y = P * x (15) 

where Q and P are linear differential operator matrices 5 -w P = 
'ij 
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and in addition Q is diagonal. 

Both vectors x and y can be partitioned in terms of the terminal variable« 

of the both subsystems 

| ^ » y(l) = P^L * x(l) '+ P10 * x (2) 12 

| Q2 *7^ = P12 * x(l) * ?22 * x
(2) (16) 

Unit interaction is now specified by the following theorems 

Theorem 2; System (15) has a unit interaction if and only if the following 

condition is satisfied for any real valued vector function u(t) 

[?11 * ^2 - ?12 * ?2l] * » (t) = 0        (17) 

Proof? Using the properties of the linear operators the proof follows easily 

from Eq. (16). Applying R_ on the first equation and operator P-w, on the second 

one obtains 

P22 » Q-L *"7^(t) = P22 * 
Pll * x(l)^ * *22 * ?12 * x(l)(t) 

P-L2 * Q2 » y(2)(t) = P^ * P21 ♦ x(l)(t) + P-^ * P22 ♦ x(2)(t) 

from where one obtains 

(18) 

I P22 *Q1* y(1)(t) - P^ * ä2 ♦ 3F(2)(t)   = 

I [?22 * ?11 - ?12 * ?2l] * ^ 

(19) 

^^(t) 

Therefore condition (l?) is sufficient. Since only two vector variables are 

involved to prove that condition (1?) is necessary it is enough to exhibit the 

only other possible combination 

P21 * Qi * y(l)(t) - ^ * Q2 » y(2)(t)   = 
(20) 

^ * Poo   -   Po-, * P-.o I   ♦ 5(2)(t) [P11*P22    "   P21*P12] 
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which follows easily- from (l8)o Since the linear operators can exchange the 

order in which they are applied the theorem is proved. 

Condition Cl?) specifies unit interaction between the two subsystems only. 

If the unit interaction inside any of the subsystems i.e. among some of their 

terminal variables this appears in the form of the functional dependence among 

the elements of the output vectors of the given subsystem. This in turn pro- 

voked the existance and uniqueness problem in the a) and p) experiments but 

does not influence directly condition (l?)» Therefore condition (l?) really- 

specified only unit interaction between the subsystems. 

c. V-Canonical Representation 

the Systems vector equation is now 

L»y = N*J +R*y (21) 

where L, N and R are linear differential operator    matrices,  L = (jL) N = (n.)j 

R = (r..) and L and N are diagonal while R is off diagonal i.e. r^, = 0 for all 

i = i. 
It is apparent that the system has unit interaction if and only if one of 

the following conditions is satisfied 

1) A HN] * u(t) = 0 (22) 

for any real function u(t) i.e. if any of the diagonal elements of the 

matrix N is zero. 

2) If     | r^ |  > oo (23) 

for one or more j-s. 

IV, Interactions in a System Subdivided into Three Subsystems 

If the system is subdivided into three subsystems S, S- and S one can 

distinguish two situations with respect to interactions. 

A) One can consider interactions between one subsystem say S.. and the 

other two subsystems S_ and S . The problem is then reduced to the one discuss- 

ed in Section III. 

B) One can consider interactions between the two subsystems say S.. and 

S    which together with the subsystem S composed the system. This interaction 

t 
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will be termed relative interaction» The problem is now conceptually different 

from that discussed in Section III. Interaction is considered between the two 

parts of the system S, and S- in the presence of another subsystem S«, This 

presence conditioned interaction K^2y,N although a direct influence of the subsystems 

S should be eliminated. This can be done by securing as the primary require- 

ment in the consideration      _____ 

y(3)(t) = o (2li) 

To achieve this as well as to secure other requirements of the experiments 
"TU 

input vector xw should be used so that in general 

7^(t) ^ 0 (25) 

Conditions for experiments a  and ß  regarding subsystems S..  and S_ are as 
before Eq (5) and (6).    Additional requirements  (.2k) and (25) however caused 
quite different behavior of the system as it will become evident from the 

following discussion. 
a) State variable representation 

Conditions for relative unit interaction are similar to the ones 

stated in Theorem 1. If the Jordan canonical form of the matrix B is of the 

required form Eq« (9) indicates that there is a unit relative interaction in 
(TT the system« If in addition y   does not appear in Eq« (p) and the homogeneous 

differential equation in y   and y   has non-trivial solutions unit relative 

interaction exists among some of the elements of the vectors y   and y  . 

b) P-Canonical Representation 
This representation is very suitable to indicate the basic diff- 

erences regarding relative interactions between the two subsystems in the 

presence or in the absence of another subsystem S,, 

The systems vector equation can now be partitioned in the following ways 

~Ti)= E    »^i) + p   ,72) + p  ^3) Qi *yvx/= f! * x^' +p
12** 13 

Q2 * y
(2)= P21 * x

(1) + P22 * x
(2) + P23 * x

(3)      (2U) 

5   » y'3)=  p    »   (l) + p    #   (2) + p    ^   (3) 
w   y     31  x     32 33 

Conditions for relative unit interaction can be now specified by the 

following theorem 
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Lemma: 1. If the following condition is satisfied for every real function u(t) 

F33 * ?12 " F13 * F32 I * u(t) = 0 (25) 

the relative interaction between the system S^ and S«, is zero. 

2»  If the following condition is satisfied for every real function u(t) 

F33 * F22 " ^3 * ?32 I * u(t) = 0 (26) 

the relative interaction between the subsystems S^ and S- is undeterminable by 

the experiments a and ß• 

Theorem» A system subdivided into three subsystems has a unit relative inter- 

action among the subsystems S^ and Sg if and only if: l) the following con- 

dition is satisfied for every real time function u(t). 

I P I * u(t) = 0 (2?) 

where 1?!   is determinant of the operators from Eq(2k.}, 2) if the system does not 

have zero relative interaction specified by the lemma 1 or indeterminate rela- 

tive interaction specified by lemma 2« 

Proof:    Consider at first experiment a.  The ocrditicns far the experiment are 

52 * 7^ = P2I * ^ * F22 * T2* + P23 ♦ 7^ = o 

53   »     y(3)       =      p3i   *      x(l)       +P32»      X(2)+P33»      X(3)       =      0 

Using multiplicative properties of linear operators one obtains from 

(2U) and (28) 

[?22*?33    "   ?23*PV1 ♦   Q     * V^   =    |P|    *   xCl) (29) 

From the ri^it side of Eq (29)  one can conclude that condition 1 of the 

theorem is sufficient.    From the left side one can conclude that the condition 

of the lemma 1, causes undeterminancy in the outcome of the experiment a). 

Conditions for the experiment P)  give the equations 
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I 
Q, »    yv "    =    P„ *    x(2)     +    P .3  ~    / ^32 

«x * r™  - *u 

% * y(2)   =  P 22 *      X 

P33     *    X(3)     =     0 

*    x^2^    +    P13    »    x 

(2)     +    5 
23 »    x 

(3) 

(3) 

(30) 

13 

By elimination one can obtain from these 

P33 * 91 * 

P  * Q~ ♦ 
33 H2 

y(l) = ^P ♦ P 
33   12 

P  * P r32  ^ "] 
J2T- [ P  ♦ P r33   22 

P->« * 32 ?23] 

,(2) 

TTü 
(31) 

From Eq (31) follows that the y^ ^ = 0 \jnder the condition of the lemma 
(2) 

regardless of the y    so that the relative interaction between S, and S_ is 

zero. Since Eq3.(29) and (31) give complete information about the outcome of 

the both experiments the condition 1 of the theorem is also necessary for unit 

relative interaction. 

It is interesting to note that lemma 1 specifies a zero relative inter- 

action between the subsystems S, and S9 only because of the orimary require- 

ments that y   =0. Really from Eq, (31) one obtains 

* y(2) =  x * y(3) (32) 

where V and W are linear matrix operators, Eq, (32) shows that the relative 

interaction among S„ and S is a unit one. Therefore zero relative interaction 

between S.. and S« indicates only that a much stronger interaction exists be- 

tween S^ and S_ (infinite interaction). Actually if the interaction between 

S.. on one side and S., S on the other is considered (Case A) this interaction 

is not necessarily unit one in spite of the condition (25)« 

C) V-Canonical Representation 

Equations for the system are now 

Ll* y(1) = S, :<1) * R 12 
y(2) + S13 . /3) 

(33) 



2h 

L2 * 7^ = N2 « x(2) + R21 * y^ + R23 ♦ "7^ 
(33) 

-7 

L3 * y
(3) = N3 * x(3) * »3! * y(1) + R32 ♦ 7(2) 

Experiment ß results for the relation 

^ * y(l)  = ^ ♦ x(l) (3li) 

Trtiile experiment ß   gives 

^   »   yCl)    =   ^   *   y(2) (3?) 

It is apparent that condition for unit interaction is again 

4 1^1=0  or  || R^ || -* 00 (36) 

V« A Measure of Interaction 

Consideraticns in the preceeding sections enables characterization of zero 

and unit interaction in a system.  The main problem left, however, is how to 

characterize interactions in the cases other than zero and unit» The answer 

to this question is very difficult. To characterize these cases it is necess- 

ary to introduce a measure of interaction which Trill serve as a basis for com- 

parison of the two interactions of the same system or to compare different 

systems regarding the interaction. 

Before proposing a measure of interaction consider the intuitive require- 

ments which such a measure should satisfy: 

1. It should be a functional k.. defined in the set of the terminal 

variables. 

2. It should be equal to zero if and only if the interaction is zero. 

3« It should be equal to one if and only if the system has an unit inter- 

action. 

U. It should be a single-valued function of the systems parameters or 

characteristic functions with the domain between zero and one. 

1 
I 
I 
I 
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5«  It should be monotone between any consecutive intersections with the lines 

ki±=0    and 1^ = 1. 

A measure of interaction can be obtained in the following way. 

Define a functional of the output tine function <t> FyJl which satisfies 

requirements l.-£. except that the domain of the functional is from zero to 

infinity. Take the ratio of the two functionals obtained from the experiments 

P    andtl A  r      I 

Ji 
* [vj 

(37) 

The   interaction measure is now 

v= ^L 
1 + K 

(38) 

Ji 

It is apparent that the interaction measure as defined in (37) is not 

unique.  It depends on the selection of the functional (j) which in turn should 

reflect the context in which the measure is used and also should be as simple 

as possible. It deoenda also on the test signal used. The importance of the 

imput amplitudes, however, can be eliminated if the following limit exists 

lim Ki± = lim ♦ [y J 
♦ [vj 

(39) 

I 
I 

In the case of the vector subsystems interaction measure  (37) becomes 

^JKO =   z 
e=l 

♦ [W3)(t)] 
* [Wd)(t)j 

(Uo) 

For a linear system a simple mean square functional may be appropriate 

♦ L*yl   =JT CAyU)]
2 dt (Ul) 
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where T is time interval in which the systems behavior is under consideration« 

For a final value system functional might be defined in terms of deviation 

of the final state 

♦ » CÄy(T)]2 (U2) 

For a linear system and V-canonical representation one obtains 

*■  dt j'[VÄ^ ]' 
'T 

Asstune the following selection for the test change y^Ct) is made 

yi(t)  = Ä XjCt)  = *4 ZjCt) (Uli) 

Since limit (39) now exists 

l2 ^«A^t)]' dt 

ji  aA-*0 
JTC

NJ   ^^jCt^dt 

Jlfj * A
 

zj(t)j2 dt 
(U5) 

measure is independent of the inputs amplitudes. 

It is interesting to note that the measure is defined very simply in terms 

of the V-canonical representation. This seems to be true even for the nonlinear 

systems. Therefore V-canonical representation appears to be most appropriate. 

VI. A Statistical Approach to the Interaction Measure 

A measure of interaction as defined in (37) depends upon the form and in 

general even upon the amplitudes of the input vector. This pittfall can be re- 

duced if the measure is defined statistically on a whole set of input vectors« 
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Assuming that the set is finite one obtains for the measure 

_    4    j>[^(t  ,  q)]} 
Rji """ 

M{    *Ea yj(t ' ^} 

CU6) 

where M indicates operation of mathematical expectation and p is the dimension 

of the set. If the set is infinite and can be specified -with a parameter X 

one obtains 

(JiC' ApyjCt ,X)J dXJ. 

Ji M 
(1*7) 

Äayj(t ,x )J dx} 

Consider several examples of the input sets. Assume that the input set 

is a real vector soace generated by a basis Pz-jCt), ... ZnCtTj « Interaction 

measure becomes now 

K    =-a 
Ji 

iHvq2}ji Aß
2y(t,q)dt]} 

(kB) 

|{M{Vq};TVy(t,q)dt   } 

If the vector space (7    is of infinite dimensions 

x(t) =    p   V(s)  z(s,  t)ds 

interaction measures become 

.     y.(t , s) dt 
Tap      J   l-M} ds 

(U9) 

Us. T4   a yj(t  ,   s) dt '] - ['/j} ds 

Preceeding discussion indicates the structure of the proposed measure of 

interaction. Many problems of the application of this measure, however, are 

outside of the scope of this paper. 
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VII,    Behavior of the System in the Constrained Environment - 

Cohesion of the Systems 

Interaction is considered to be the property of a system which should be 

as much as possible independent of the circumstances in which the system oper- 

ates.    If the behavior of the system is restricted, however, this has to show 

up in the measure of interaction and in fact in analytical or experimental 

determination of the measure.    To take into account these restrictions the concept 

of cohesion has been introduced.    Its definition is based on the following: 

Consider a system with the given constraints reflecting physical realization 

or economical optimum.    There is a given set of output vectors which now can 

be achieved without any deviation or error by acting on the system with a set 
of inputs from the given restricted class.    With respect to these outputs the 

system will be defined to have zero cohesion.    Outputs outside the class of 

zero cohesion can be achieved by the given system only approximately.    The 

success in the achieving these outputs define cohesion of the system in the 

given constrained conditions.    It is interesting to note that if the desired 

outputs behavior is specified only by a point in the state-variable hyper space 

independent of the time when this point is reached one has a special problem in 

cohesion nhich under the name of controlability has been studied by several 

authors. 

VHI.    Application of the Interaction Measure in Control 

Measure of interaction should become  standard concept in the analysis and 

synthesis of the large control system.  Bie areas of its application might be divid- 

ed into three parts. 

1.    In analyzing large con^lex systems one should establish matrix of 

relative output    interaction    K =|k, .jwhich will serve as a basis for determin- 
ing which approach will be taken in solving control problems.    For example,  the 

interaction matrix will indicate -whether some of the subsystems can be treated 

independently and also whether interactions inside a given subsystem are strong 
or weak.    For a strongly interacting system a centralized control can be applied 

while for the weakly interacting systems cross-controller approach might be more 
appropriate. 



19 

2. Interaction measure offers a method for realization of organizational 

approach discussed in the Introduction. The system can now be subdivided into 

more subsystems than in case 1 since the introduction among the subsystems will 

be taken care of by the controllers on the higher level, 

3« Interaction in a system can be evaluated continuously and used in an 

adaptive interacting control approach« 

I 

IX. Conclusions 

The present paper offers a conceptual basis for a quantitative approach 

to the problem of interaction and also gives an analytical basis as to how 

the problem can be solved for linear systems. The proposed approach however 

opens a vast area of problems, some of them as e.g. those connected with non- 

linear systems are of great complexity. The problems which need immediate 

further study, however, are those connected with the application of the ap- 

proach. In this respect it is of particular significance that the measure 

of interaction is defined for "black box" systems, and, therefore, the asso- 

ciated problems can be studied without use of involved analytical apparatus 

but rather by using a conputer or experiments on actual systems. 
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